Extensions 1→N→G→Q→1 with N=C4 and Q=C22×Dic3

Direct product G=N×Q with N=C4 and Q=C22×Dic3
dρLabelID
Dic3×C22×C4192Dic3xC2^2xC4192,1341

Semidirect products G=N:Q with N=C4 and Q=C22×Dic3
extensionφ:Q→Aut NdρLabelID
C41(C22×Dic3) = C2×D4×Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C496C4:1(C2^2xDic3)192,1354
C42(C22×Dic3) = C22×C4⋊Dic3φ: C22×Dic3/C22×C6C2 ⊆ Aut C4192C4:2(C2^2xDic3)192,1344

Non-split extensions G=N.Q with N=C4 and Q=C22×Dic3
extensionφ:Q→Aut NdρLabelID
C4.1(C22×Dic3) = Dic3×D8φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C496C4.1(C2^2xDic3)192,708
C4.2(C22×Dic3) = D8⋊Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C496C4.2(C2^2xDic3)192,711
C4.3(C22×Dic3) = Dic3×SD16φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C496C4.3(C2^2xDic3)192,720
C4.4(C22×Dic3) = SD16⋊Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C496C4.4(C2^2xDic3)192,723
C4.5(C22×Dic3) = Dic3×Q16φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C4192C4.5(C2^2xDic3)192,740
C4.6(C22×Dic3) = Q16⋊Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C4192C4.6(C2^2xDic3)192,743
C4.7(C22×Dic3) = D85Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C4484C4.7(C2^2xDic3)192,755
C4.8(C22×Dic3) = D84Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C4484C4.8(C2^2xDic3)192,756
C4.9(C22×Dic3) = C2×D4⋊Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C496C4.9(C2^2xDic3)192,773
C4.10(C22×Dic3) = (C6×D4)⋊6C4φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C448C4.10(C2^2xDic3)192,774
C4.11(C22×Dic3) = C2×Q82Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C4192C4.11(C2^2xDic3)192,783
C4.12(C22×Dic3) = (C6×Q8)⋊6C4φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C496C4.12(C2^2xDic3)192,784
C4.13(C22×Dic3) = C4○D43Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C496C4.13(C2^2xDic3)192,791
C4.14(C22×Dic3) = C4○D44Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C496C4.14(C2^2xDic3)192,792
C4.15(C22×Dic3) = C2×Q83Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C448C4.15(C2^2xDic3)192,794
C4.16(C22×Dic3) = (C6×D4)⋊9C4φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C4484C4.16(C2^2xDic3)192,795
C4.17(C22×Dic3) = C24.49D6φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C448C4.17(C2^2xDic3)192,1357
C4.18(C22×Dic3) = C2×Q8×Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C4192C4.18(C2^2xDic3)192,1370
C4.19(C22×Dic3) = C6.422- 1+4φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C496C4.19(C2^2xDic3)192,1371
C4.20(C22×Dic3) = C12.76C24φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C4484C4.20(C2^2xDic3)192,1378
C4.21(C22×Dic3) = Dic3×C4○D4φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C496C4.21(C2^2xDic3)192,1385
C4.22(C22×Dic3) = C6.1442+ 1+4φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C496C4.22(C2^2xDic3)192,1386
C4.23(C22×Dic3) = C2×C8⋊Dic3φ: C22×Dic3/C22×C6C2 ⊆ Aut C4192C4.23(C2^2xDic3)192,663
C4.24(C22×Dic3) = C2×C241C4φ: C22×Dic3/C22×C6C2 ⊆ Aut C4192C4.24(C2^2xDic3)192,664
C4.25(C22×Dic3) = C23.27D12φ: C22×Dic3/C22×C6C2 ⊆ Aut C496C4.25(C2^2xDic3)192,665
C4.26(C22×Dic3) = C2×C24.C4φ: C22×Dic3/C22×C6C2 ⊆ Aut C496C4.26(C2^2xDic3)192,666
C4.27(C22×Dic3) = C23.52D12φ: C22×Dic3/C22×C6C2 ⊆ Aut C496C4.27(C2^2xDic3)192,680
C4.28(C22×Dic3) = C23.9Dic6φ: C22×Dic3/C22×C6C2 ⊆ Aut C4484C4.28(C2^2xDic3)192,684
C4.29(C22×Dic3) = C22×C3⋊C16central extension (φ=1)192C4.29(C2^2xDic3)192,655
C4.30(C22×Dic3) = C2×C12.C8central extension (φ=1)96C4.30(C2^2xDic3)192,656
C4.31(C22×Dic3) = Dic3×C2×C8central extension (φ=1)192C4.31(C2^2xDic3)192,657
C4.32(C22×Dic3) = C2×C24⋊C4central extension (φ=1)192C4.32(C2^2xDic3)192,659
C4.33(C22×Dic3) = C12.12C42central extension (φ=1)96C4.33(C2^2xDic3)192,660
C4.34(C22×Dic3) = Dic3×M4(2)central extension (φ=1)96C4.34(C2^2xDic3)192,676
C4.35(C22×Dic3) = C12.7C42central extension (φ=1)96C4.35(C2^2xDic3)192,681
C4.36(C22×Dic3) = C24.78C23central extension (φ=1)964C4.36(C2^2xDic3)192,699
C4.37(C22×Dic3) = C23×C3⋊C8central extension (φ=1)192C4.37(C2^2xDic3)192,1339
C4.38(C22×Dic3) = C22×C4.Dic3central extension (φ=1)96C4.38(C2^2xDic3)192,1340
C4.39(C22×Dic3) = C2×C23.26D6central extension (φ=1)96C4.39(C2^2xDic3)192,1345
C4.40(C22×Dic3) = C2×D4.Dic3central extension (φ=1)96C4.40(C2^2xDic3)192,1377

׿
×
𝔽