extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C22×Dic3) = Dic3×D8 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.1(C2^2xDic3) | 192,708 |
C4.2(C22×Dic3) = D8⋊Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.2(C2^2xDic3) | 192,711 |
C4.3(C22×Dic3) = Dic3×SD16 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.3(C2^2xDic3) | 192,720 |
C4.4(C22×Dic3) = SD16⋊Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.4(C2^2xDic3) | 192,723 |
C4.5(C22×Dic3) = Dic3×Q16 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.5(C2^2xDic3) | 192,740 |
C4.6(C22×Dic3) = Q16⋊Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.6(C2^2xDic3) | 192,743 |
C4.7(C22×Dic3) = D8⋊5Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.7(C2^2xDic3) | 192,755 |
C4.8(C22×Dic3) = D8⋊4Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.8(C2^2xDic3) | 192,756 |
C4.9(C22×Dic3) = C2×D4⋊Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.9(C2^2xDic3) | 192,773 |
C4.10(C22×Dic3) = (C6×D4)⋊6C4 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 48 | | C4.10(C2^2xDic3) | 192,774 |
C4.11(C22×Dic3) = C2×Q8⋊2Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.11(C2^2xDic3) | 192,783 |
C4.12(C22×Dic3) = (C6×Q8)⋊6C4 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.12(C2^2xDic3) | 192,784 |
C4.13(C22×Dic3) = C4○D4⋊3Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.13(C2^2xDic3) | 192,791 |
C4.14(C22×Dic3) = C4○D4⋊4Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.14(C2^2xDic3) | 192,792 |
C4.15(C22×Dic3) = C2×Q8⋊3Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 48 | | C4.15(C2^2xDic3) | 192,794 |
C4.16(C22×Dic3) = (C6×D4)⋊9C4 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.16(C2^2xDic3) | 192,795 |
C4.17(C22×Dic3) = C24.49D6 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 48 | | C4.17(C2^2xDic3) | 192,1357 |
C4.18(C22×Dic3) = C2×Q8×Dic3 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.18(C2^2xDic3) | 192,1370 |
C4.19(C22×Dic3) = C6.422- 1+4 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.19(C2^2xDic3) | 192,1371 |
C4.20(C22×Dic3) = C12.76C24 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.20(C2^2xDic3) | 192,1378 |
C4.21(C22×Dic3) = Dic3×C4○D4 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.21(C2^2xDic3) | 192,1385 |
C4.22(C22×Dic3) = C6.1442+ 1+4 | φ: C22×Dic3/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.22(C2^2xDic3) | 192,1386 |
C4.23(C22×Dic3) = C2×C8⋊Dic3 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C4 | 192 | | C4.23(C2^2xDic3) | 192,663 |
C4.24(C22×Dic3) = C2×C24⋊1C4 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C4 | 192 | | C4.24(C2^2xDic3) | 192,664 |
C4.25(C22×Dic3) = C23.27D12 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.25(C2^2xDic3) | 192,665 |
C4.26(C22×Dic3) = C2×C24.C4 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.26(C2^2xDic3) | 192,666 |
C4.27(C22×Dic3) = C23.52D12 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.27(C2^2xDic3) | 192,680 |
C4.28(C22×Dic3) = C23.9Dic6 | φ: C22×Dic3/C22×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.28(C2^2xDic3) | 192,684 |
C4.29(C22×Dic3) = C22×C3⋊C16 | central extension (φ=1) | 192 | | C4.29(C2^2xDic3) | 192,655 |
C4.30(C22×Dic3) = C2×C12.C8 | central extension (φ=1) | 96 | | C4.30(C2^2xDic3) | 192,656 |
C4.31(C22×Dic3) = Dic3×C2×C8 | central extension (φ=1) | 192 | | C4.31(C2^2xDic3) | 192,657 |
C4.32(C22×Dic3) = C2×C24⋊C4 | central extension (φ=1) | 192 | | C4.32(C2^2xDic3) | 192,659 |
C4.33(C22×Dic3) = C12.12C42 | central extension (φ=1) | 96 | | C4.33(C2^2xDic3) | 192,660 |
C4.34(C22×Dic3) = Dic3×M4(2) | central extension (φ=1) | 96 | | C4.34(C2^2xDic3) | 192,676 |
C4.35(C22×Dic3) = C12.7C42 | central extension (φ=1) | 96 | | C4.35(C2^2xDic3) | 192,681 |
C4.36(C22×Dic3) = C24.78C23 | central extension (φ=1) | 96 | 4 | C4.36(C2^2xDic3) | 192,699 |
C4.37(C22×Dic3) = C23×C3⋊C8 | central extension (φ=1) | 192 | | C4.37(C2^2xDic3) | 192,1339 |
C4.38(C22×Dic3) = C22×C4.Dic3 | central extension (φ=1) | 96 | | C4.38(C2^2xDic3) | 192,1340 |
C4.39(C22×Dic3) = C2×C23.26D6 | central extension (φ=1) | 96 | | C4.39(C2^2xDic3) | 192,1345 |
C4.40(C22×Dic3) = C2×D4.Dic3 | central extension (φ=1) | 96 | | C4.40(C2^2xDic3) | 192,1377 |